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Abstract
Aim: Climate is a major driver of large-scale variability in biodiversity, as a likely re-
sult of more intense biotic interactions under warmer conditions. This idea fuelled 
decades of research on plant-herbivore interactions, but much less is known about 
higher-level trophic interactions. We addressed this research gap by characterizing 
both bird diversity and avian predation along a climatic gradient at the European scale.
Location: Europe.
Taxon: Insectivorous birds and pedunculate oaks.
Methods: We deployed plasticine caterpillars in 138 oak trees in 47 sites along a 19° 
latitudinal gradient in Europe to quantify bird insectivory through predation attempts. 
In addition, we used passive acoustic monitoring to (i) characterize the acoustic diver-
sity of surrounding soundscapes; (ii) approximate bird abundance and activity through 
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1  |  INTRODUC TION

Climate is a key driver of biotic interactions (Dobzhansky, 1950). A 
long-held view in ecology posits that warmer and more stable cli-
matic conditions intensify biotic interactions and accelerate specia-
tion (MacArthur, 1984; Schemske et al., 2009), which should result 
in large-scale positive correlations between biodiversity and biotic 
interactions. However appealing this idea is, the generality of large-
scale climatic clines in biodiversity and biotic interactions as well as 
the underlying causal links are still widely debated. Yet, insights into 
the controversy have been dominated by studies on plant-insect in-
teractions (Anstett et al., 2016; Kozlov et al., 2015). Biotic interac-
tions involving higher trophic levels received much less attention. 
Yet, insectivorous birds are among the predators contributing the 
most to the control of insect herbivores in terrestrial ecosystems 
(Bael et al., 2008; Sam et al., 2023; Sekercioglu, 2006) and therefore 
have consequences on both the assembly of ecological communi-
ties and the functioning of ecosystems. The omission of predation 
in theories linking large-scale variability in climate with biodiversity 
therefore represents a critical gap in knowledge that needs to be 
addressed.

Bird communities are highly responsive to climate, at both re-
gional and continental scale. There is a large body of literature 
demonstrating that several dimensions of bird diversity vary with 
climate, including bird abundance, species richness, phyloge-
netic or functional diversity (Blackburn & Gaston,  1996; Symonds 
et  al.,  2006; Willig et  al.,  2003). A well-substantiated explanation 
is that niche opportunities increase with increasing habitat hetero-
geneity under milder climatic conditions, which increases species 
coexistence and ultimately species richness through functional com-
plementarity (Hawkins et al., 2006). The biodiversity and ecosystem 

relationship theory predicts that both abundance and diversity of 
birds are crucial predictors of the top-down control they exert upon 
insect prey (Bael et  al.,  2008; Nell et  al.,  2018; Otto et  al.,  2008; 
Sinclair et al., 2003). Numerous studies supported this theory and 
demonstrated that bird functional diversity in particular—that is 
the diversity, distribution and complementarity of predator traits 
involved in predation—is a good predictor of predation (Barbaro 
et al., 2014; Greenop et al., 2018; Philpott et al., 2009). It follows that 
variation in bird diversity along climatic gradients should be mirrored 
by consistent variation in avian predation rates.

Local factors can, however, alter macroecological patterns (Ikin 
et  al.,  2014; Kissling et  al.,  2012), by filtering the regional species 
pool (De la Mora et al., 2015; Kleijn et al., 2011) and by influencing 
the behaviour of organisms. The diversity and composition of bird 
communities heavily depend on local factors that provide niches 
and food opportunities (Charbonnier et  al.,  2016). In this respect, 
multiscale forest cover proved to be a particularly good predictor of 
composition of bird communities at different spatial scales, as bird 
foraging activity is ultimately determined by vertical and horizon-
tal habitat heterogeneity, which influences both where prey can be 
found and caught, and where foraging birds can breed and hide from 
predators (Vickery & Arlettaz, 2012). Thus, modelling the response 
of bird communities to large-scale bioclimatic drivers as well as their 
role as predators would benefit from using a combination of habi-
tat variables and biotic predictors (Barbaro et al., 2019; Speakman 
et al., 2000). However, cross-continental studies exploring the rela-
tionship between large-scale climatic gradients and the strength of 
biotic interactions generally ignore local factors, which may partly 
explain inconsistencies in their findings (but see Just et al., 2019).

A major challenge to analyse climatic clines in biotic interac-
tions consists in simultaneously characterizing changes in predator 

passive acoustic recordings; and (iii) infer both taxonomic and functional diversity of 
insectivorous birds from recordings.
Results: The functional diversity of insectivorous birds increased with warmer cli-
mates. Bird predation increased with forest cover and bird acoustic activity but de-
creased with mean annual temperature and functional richness of insectivorous birds. 
Contrary to our predictions, climatic clines in bird predation attempts were not di-
rectly mediated by changes in insectivorous bird diversity or acoustic activity, but 
climate and habitat still had independent effects on predation attempts.
Main Conclusions: Our study supports the hypothesis of an increase in the diversity 
of insectivorous birds towards warmer climates but refutes the idea that an increase 
in diversity would lead to more predation and advocates for better accounting for 
activity and abundance of insectivorous birds when studying the large-scale variation 
in insect-tree interactions.

K E Y W O R D S
acoustic diversity, climatic gradient, functional diversity, insectivorous birds, plasticine 
caterpillars, predation function
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    |  3SCHILLÉ et al.

biodiversity and experimentally assessing the strength of predation, 
while considering the effect of contrasting habitats. However, the 
recent development of passive acoustic monitoring provides a stan-
dardized, low-cost and non-invasive approach for ecological studies 
and biodiversity monitoring (Gibb et al., 2019). The acoustic moni-
toring of a given habitat primarily allows the delayed identification of 
bird species over large gradients with no need for distributed exper-
tise across study sites. The quantification of bird abundance through 
passive acoustic monitoring remains a technical challenge, but the 
calculation of certain acoustic indices based on the physical char-
acteristics of the recorded sounds provides relevant proxies to this 
end (Gasc et al., 2013; Sueur et al., 2014). Should such indices consis-
tently correlate with macro-scales biotic interactions, ecoacoustics 
would be a promising complementary approach to existing methods 
in macroecology and in functional ecology.

Here, we addressed the hypothesis of continental north–south 
clines on insectivorous bird community diversity and their preda-
tion function, while controlling for local factors throughout the 
European distribution range of the pedunculate oak (Quercus robur 
L., 1753), a major forest tree species. Specifically, we predict the 
following (Figure 1): (i) bird diversity (including bird acoustic diver-
sity, insectivorous bird species richness and functional diversity) 
and predation attempts increase with warmer climates; (ii) bird 
predation attempts increase with bird acoustic activity, species 
richness and greater functional diversity of insectivorous birds; 
(iii) bird diversity, acoustic activity and bird predation attempts in-
crease with increasing forest cover at both local (neighbourhood) 
and larger spatial scales; (iv) large-scale variability in bird predation 

attempts is driven by local changes in the diversity and acoustic ac-
tivity of birds. To test these predictions, we quantified bird preda-
tion attempts on plasticine caterpillars and estimated bird species 
richness, functional diversity and acoustic activity through simul-
taneous passive acoustic monitoring. We eventually tested the re-
spective responses of these variables and their relationships at the 
pan-European scale.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

We focused on the pedunculate oak, Quercus robur, which is one of 
the keystone deciduous tree species in temperate European forests, 
where it is of high ecological, economic and symbolic importance 
(Eaton et al., 2016). The species occurs from central Spain (39° N) to 
southern Fennoscandia (62° N) and thus experiences a huge gradi-
ent of climatic conditions (Petit et al., 2002). A widely diverse com-
munity of specialist and generalist herbivorous insects is associated 
with this species throughout its distributional range (Southwood 
et al., 2005).

Between May and July 2021, we studied 138 trees in 47 sites 
across 17 European countries covering most of the pedunculate oak 
geographic range (Figure 2). The sites were chosen with the minimal 
constraint of being located in a wooded area of at least 1 ha (Valdés-
Correcher et  al.,  2021). We randomly selected three mature oaks 
per site, with the exception of six sites (three sites with one tree, one 

F I G U R E  1  Conceptual diagram of the predictions of this study and the relationships already established in the literature. Boxed elements 
written in bold correspond to the main categories of variables tested; they are not variables as such. Variables used in models are shown 
in regular font. Where several variables described the same category (e.g. BI, ADI, H, all describing acoustic indices), we used multi-model 
comparisons to identify the best variable. Items framed in black on a white background represent untested variables. Black arrows indicate 
relationships well supported by the literature (see Gasc et al., 2018; and Figure 2 Sánchez-Giraldo et al., 2021). Our specific predictions 
are represented with grey arrows, and solid and dashed lines represent positive and negative (predicted) relationships. Numbers refer to 
predictions as stated in the main text.
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4  |    SCHILLÉ et al.

site with two trees and two sites with five trees, see Table S1.1 in 
Appendix S1 in Supporting Information).

2.2  |  Bird predation attempts

We measured bird predation attempts in the field by exposing a total 
of 40 plasticine caterpillars (20 plasticine caterpillars twice) on each 
individual oak. We made plasticine caterpillars of green plasticine, 
mimicking common lepidopteran larvae (3 cm long, 0.5 cm diameter, 
see Low et al., 2014). We secured them on twigs with a 0.3 mm me-
tallic wire. We attached five plasticine caterpillars to each of four 
branches facing opposite directions (i.e., 20 caterpillars per tree) at 
about 2 m from the ground.

We installed the plasticine caterpillars 6 weeks after budburst 
in each study area, thus synchronizing the study with local oak 
phenology. We removed the plasticine caterpillars after 15 days 
and installed another set of 20 artificial caterpillars per tree for 
another 15 days. At the end of each exposure period (which var-
ied from 10 to 20 [mean ± SD: 14.5 ± 1.23]) days due to weather 
conditions, we carefully removed the plasticine caterpillars from 

branches, placed them into plastic vials and shipped them to the 
project coordinator. Plasticine caterpillars from six sites were ei-
ther lost or altered during shipping, preventing the extraction of 
relevant data.

A single trained observer (EVC) screened the surface of plasti-
cine caterpillars with a magnifying lens to search for the presence of 
bill marks on clay surface (Low et al., 2014). As we were ultimately 
interested in linking bird diversity with bird predation attempts, we 
did not consider marks left by arthropods and mammals.

We defined bird predation attempts index as p/d, where p is the 
proportion of plasticine caterpillars with at least one sign of at-
tempted predation by birds and d is the number of days plasticine 
caterpillars were exposed to predators in the field. We only consid-
ered as attacked those caterpillars that we retrieved; missing cater-
pillars were not accounted for in the calculation of p. We calculated 
bird predation attempts for each tree and survey period separately. 
Because other variables were defined at site level (see below), we 
averaged bird predation attempts across trees and surveys in each 
site (total: n = 41).

To assess the effect of temperature independently of other vari-
ables that could vary with latitude, we also calculated a second bird 

F I G U R E  2  Locations of the 47 sites sampled in spring 2021. Average annual temperature (colour scale) according to WorldClim (Hijmans 
et al., 2005) and Quercus robur distribution range are indicated.
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    |  5SCHILLÉ et al.

predation attempts index by standardizing the predation attempts 
by daylight duration in every site. We ran the same statistical models 
as for the non-standardized bird predation attempts. The outcomes 
remained qualitatively the same and the results of this analysis are 
presented in Table S2.2 in Appendix S2.

2.3  |  Acoustic monitoring and related variables

We used passive acoustic monitoring to characterize the species and 
functional diversity of bird communities associated with oaks, as 
well as to serve as a proxy of the abundance and diversity of vocal-
izing birds (Figure 2). In each site, we randomly chose one oak among 
those used to measure bird predation rates in which we installed 
an AudioMoth device (Hill et al., 2018) to record audible sounds for 
30 min every hour. Automated recording started the day we installed 
the first set of 20 plasticine caterpillars in trees and lasted until bat-
teries stopped providing enough energy. The recording settings 
were the following: Recording period: 00.00–24.00 (UTC); Sample 
rate: 48 kHz; Gain: Medium; Sleep duration: 1800 s; Recording duration: 
1800 s.

In all 47 sites, Audiomoths were active on average (±SD) for 
9 ± 3 days (range: 1–24), which corresponded to 5920 h of recordings 
in total and from 70 to 335 (246 ± 65) 30 min continuous acoustic 
samples per site. When Audiomoths ran out of battery, the record-
ings lasted <30 min (between 1 and 56 recordings per site were 
affected).

2.3.1  |  Acoustic diversity indices as proxies of bird 
diversity and activity

We processed acoustic samples with functions in the ‘soundecol-
ogy’ 1.3.3 (Villanueva-Rivera & Pijanowski,  2018) and ‘seewave’ 
2.1.8 (Sueur, Aubin, & Simonis, 2008) libraries in the R environment 
4.1.2 (R Core Team, 2020), and a wrap-up function made available 
by A. Gasc in GitHub (https://​github.​com/​agasc/​​Sound​scape​-​analy​
sis-​with-​R). We first divided every acoustic sample (regardless of its 
length) into non-overlapping 1 min samples.

Acoustic indices capture various dimensions of the soundscape 
but are not expected to fully reflect any bird biodiversity-related 
variable. However, several studies have shown that some of them 
are positively related to the abundance or diversity of vocalizing 
species (for more details, see Sánchez-Giraldo et al., 2021, Figure 2 
and Gasc et al., 2018), although the strength of this relationship is 
still poorly understood. We have therefore chosen to consider only 
those specific indices and we used multi-model statistical inferences 
to identify those that were the most strongly linked with the re-
sponse variables of interest (see below).

We calculated the following three acoustic diversity indices 
for each 1 min sample: the Acoustic Diversity Index (ADI) and the 
Total Acoustic Entropy (H) which are both based on Shannon di-
versity index and are therefore close to a proxy for bird diversity 

(Sueur, Pavoine, et al., 2008; Villanueva-Rivera et al., 2011), and the 
Bioacoustic Index (BI) which is positively related to bird vocal activ-
ity and the occupancy of acoustic signal frequency bands (Boelman 
et  al.,  2007; Gasc et  al., 2018). We calculated the median of each 
acoustic index per day and then averaged median values across days 
for each site separately. We proceeded like this because 24 h cycles 
summarize the acoustic activity and account for all possible sounds 
of a given day. Furthermore, other studies have previously shown 
that median values of acoustic indices for a given day are more rep-
resentative than mean values of the acoustic activity because they 
are less sensitive to extreme values (Barbaro et  al.,  2022; Dröge 
et  al.,  2021). This procedure resulted in one single value of each 
acoustic diversity index per site.

2.3.2  |  Bird species richness and functional diversity

We used acoustic samples to identify birds based on their vocaliza-
tions (songs and calls) at the species level, from which we further 
computed functional diversity indices (Figure 3).

Data processing
For each site, we subsampled the 30 min samples correspond-
ing to the songbird morning chorus (i.e., the period of maximum 
singing activity), which incidentally also corresponds to the time 
of the day when anthropic sounds were of the lowest intensity. 
Specifically, we selected sounds recorded within a period running 
from 30 min before sunrise to 3 h 30 min after sunrise. We then 
split each 30 min sample into up to three 10 min sequences, from 
which we only retained those recorded on Tuesday, Thursday, 
Saturday and Sunday. We chose these days on purpose to balance 
the differences in anthropogenic noises between working days 
and weekends. For each sound sample, we displayed the corre-
sponding spectrogram with the ‘seewave’ library in the R environ-
ment (Sueur, Aubin, & Simonis, 2008). We visually sorted sound 
samples thanks to spectrograms and discarded samples with noise 
from anthropogenic sources, rain, or wind, which can be recog-
nized as very low frequency noise on the spectrogram. We also 
discarded samples with noise of very high frequency correspond-
ing to cicada chirps. We then randomly selected one sound sample 
per site and per day, with the exception of four sites for which the 
four samples only covered two to 3 days. In total, we selected 188 
samples of 10 min (i.e., four samples per site).

Bird species identification
We distributed the samples among 21 expert ornithologists. Each 
expert performed aural bird species identifications from 4 (one 
site) to 52 samples (13 sites), primarily from her/his region of resi-
dence, for auditory acoustic detection of bird species. We estab-
lished a presence/absence Site × Species matrix, from which we 
calculated species richness and functional diversity. It is important 
to note that there is no possibility to determine the direction and 
distance at which birds are singing from audio recordings when 
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using a single device for a given site. As a result, there is no stand-
ard method for determining whether or not two vocalizations of 
the same species at two different times come from one single 
individual or more, which prevents an accurate estimate of bird 
abundance. However, experienced ornithologists involved in this 
study consider that, given the territoriality of birds and the range 
of the recorders, it is unlikely that they recorded the vocalizations 
of several individuals of the same species. It therefore seems rea-
sonable to assume that among-site differences in bird species rich-
ness were also representative of among-site differences in bird 
abundance.

Functional diversity
We defined 25 bird species as candidate insectivores for attacking 
plasticine caterpillars (Table  S3.3 in Appendix  S3) with those bird 
species meeting the following criteria: be insectivorous during the 
breeding season or likely to feed their offspring with insects, for-
age primarily in forested habitats, and are likely to use substrates 
such as lower branches or lower leaves of trees where caterpillars 
were attached to find their prey (Barbaro et al., 2021; Brambilla & 
Gatti, 2022). We calculated the functional diversity of these candi-
date insectivores by combining morphological, reproductive, behav-
ioural and acoustic traits.

With the exception of acoustic traits, we extracted functional 
traits from different published sources, listed in Table  S3.4 in 
Appendix S4. Specifically, we used three continuous traits: body 

mass, mean clutch size and bill culmen length (see Figure 2 in Tobias 
et al., 2022) combined with four categorical traits: foraging method 
(predominantly understory gleaner, ground gleaner, canopy gleaner), 
diet (insectivores or mixed diet), nest type (open in shrub, open on 
ground, cavity or open in tree) and migration (short migration, long 
migration or resident).

We derived acoustic traits calculations from the work of 
Krishnan and Tamma (2016). We first extracted five pure record-
ings without sonic background for each of the 25 candidate insec-
tivore species from the online database Xeno-​canto.​org (Vellinga 
& Planque,  2015). We then calculated the number of peaks (i.e., 
NPIC) in the audio signal (see § Acoustic diversity, above) as well 
as the frequency of the maximum amplitude peaks for each vocal el-
ement using the ‘seewave’ library (Sueur, Aubin, & Simonis, 2008) 
and averaged these frequencies for each species. Being based 
on song and call frequency and complexity, these indices inform 
the adaptation of the vocal repertoire of these species to their 
environment.

We summarized the information conveyed by the nine traits 
categories into five indices representing complementary dimen-
sions of the functional diversity (FD) of a community (Mouillot 
et al., 2013): functional richness (FRic, i.e., convex hull volume of 
the functional trait space summarized by a principal coordinates 
analysis), functional evenness (FEve, i.e., minimum spanning tree 
measuring the regularity of trait abundance distribution within 
the functional space) and functional divergence (FDiv, i.e., trait 

F I G U R E  3  Methodological pathway used to identify bird species (in light green) and calculate acoustic indices (in dark green) from 
automated recordings (see text for details).
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abundance distribution within the functional trait space volume) 
(Villéger et  al.,  2008), as well as Rao's quadratic entropy (RaoQ, 
i.e., species dispersion from the functional centroid) (Botta-
Dukát, 2005). These were calculated for each site with the ‘dbFD’ 
function of the ‘FD’ library 1.0.12 (Laliberté et al., 2014) in the R 
environment.

2.4  |  Environmental data

Environmental data refer to local temperature and forest cover. 
We used the high 10-m resolution GIS layers from the Copernicus 
open platform (Cover,  2018) to calculate forest cover for all 
European sites. We manually calculated the percentage of forest 
cover for the two sites located outside Europe using the ‘World 
imagery’ layer of Arcgis 10.2.3552. We calculated both the per-
centage of forest cover in a 20-m (henceforth called local forest 
cover) and 200-m (landscape forest cover) buffer around the sam-
pled oaks. We chose two nested buffer sizes to better capture 
the complexity of habitat structure on the diversity and acoustic 
activity of birds. Local forest cover is particularly important for es-
timating bird occurrence probability (Melles et al., 2003), whereas 
landscape forest cover is an important predictor of bird commu-
nity composition in urban areas (Rega-Brodsky & Nilon,  2017). 
Moreover, both local and landscape habitat factors shape insect 
prey distribution (Barr et al., 2021). Preliminary analyses revealed 
that results were qualitatively the same using 10-, 20- or 50-m 
buffers as predictors of local forest cover and 200- or 500-m 
buffers as predictors of landscape forest cover (see Table S4.5 in 
Appendix S4). Because other variables were defined at the site 
level, we averaged the percentage of forest cover for the sampled 
trees per site and per buffer size.

We extracted the mean annual temperature at each site from 
the WorldClim database (the spatial resolution is ~86 km2, Hijmans 
et al., 2005).

2.5  |  Statistical analyses

We analysed 14 response variables in separate linear models (LMs) 
(Table S2.2 in Appendix S2): bird predation attempts, species rich-
ness of the entire bird community and that of candidate insectivores, 
functional diversity (each of the four indices) and acoustic diversity 
(each of the three indices). For each response variable, we first built 
a full model including variables reflecting two components of the 
environment: climate and local habitat. The general model equation 
was (Equation 1):

where Y is the response variable, β0 the model intercept, βis model co-
efficient parameters, Forest20 and Forest200 the effects of the local 
and landscape forest cover respectively, Climate the effect of mean 
annual temperature and ε the residuals.

When modelling the response of bird predation attempts 
(Equation 2), we added two more variables to the model, being any of 
the three acoustic diversity indices (Acoustic diversity, Equation 2) and 
the species richness or any of the four indices describing the func-
tional diversity of candidate insectivores (Bird diversity, Equation 2):

It has to be noted that the inclusion of the acoustic component 
in the second set of models does not imply any direct link between 
avian predation and acoustic diversity. By comparing models includ-
ing the acoustic diversity or not, we are asking whether residual vari-
ance can be explained by this component while controlling for other 
sources of variation. If so, then acoustic diversity components with 
non-null coefficients have to be considered as proxies of predation, 
i.e., relatively easily measurable variables representative of unmea-
sured (or unknown) variables with a direct effect on predation.

We used logarithmic transformations (for bird predation attempts, 
acoustic entropy (H) and acoustic diversity (ADI) models) or square 
rooted transformation (for species richness of the complete bird com-
munity) of some response variables where appropriate to satisfy model 
assumptions. We scaled and centred every continuous predictor prior 
to modelling to facilitate comparisons of their effect sizes, and made 
sure that none of the explanatory variables were strongly correlated 
using the variance inflation factor (VIF) (all VIFs <5, the usual cut-off 
values used to check for multicollinearity issues (Miles, 2014)).

For each response variable, we ran the full model as well as 
every model nested within the full model and then used Akaike's 
Information Criterion corrected for small sample size (AICc) to iden-
tify the most effective model(s) fitting the data the best. We simul-
taneously selected the best variable describing the diversity and 
acoustic component (variable selection) and the best set of variables 
describing the variability of the response variable (model selection).

First, we ranked each model according to the difference in 
AICc between the given model and the model with the lowest 
AICc (∆AICc). Models within 2 ∆AICc units of the best model (i.e., 
the model with the lowest AICc) are generally considered as likely 
(Burnham & Anderson, 2002). We computed AICc weights for each 
model (wi). wi is interpreted as the probability of a given model being 
the best model among the set of candidate models. Eventually, we 
calculated the relative variable importance (RVI) as the sum of wi of 
every model including this variable, which corresponds to the prob-
ability a variable is included in the best model.

When several models competed with the best model (i.e., when 
multiple models were such that their ∆AICc <2), we applied a proce-
dure of multimodel inference, building a consensus model including 
the variables in the set of best models. We then averaged their ef-
fect sizes across all the models in the set of best models, using the 
variable weight as a weighting parameter (i.e., model averaging). We 
considered that a given predictor had a statistically significant effect 
on the response variable when its confidence interval excluded zero.

We run all analyses in the R language environment (R Core 
Team,  2020) with libraries ‘MuMIn’ 1.43.17 (Bartoń,  2020), ‘lme4’ 

(1)Yi = �� + �� × ��������,i + �� × ���������,i + �� × �������i + �i

(2)

Yi =��+��×��������,i+��×���������,i+��×��������

+��×������
������i+��×
	�����	��
������i+�i

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.14808 by C

sic O
rganización C

entral O
m

 (O
ficialia M

ayor) (U
rici), W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8  |    SCHILLÉ et al.

1.1.27.1 (Bates et al., 2015). All R codes are provided in Appendix S5 
in Supporting Information.

3  |  RESULTS

3.1  |  Bird acoustic diversity

Of the three acoustic diversity indices (see Figure S6.6 in Appendix S6 
for correlation between indices), only Acoustic Diversity Index (ADI) 
and acoustic entropy (H) were significantly associated with any of 
the predictors tested, i.e., temperature, local forest cover and land-
scape forest cover (Table S2.2 in Appendix S2). ADI and H both in-
creased with local forest cover (i.e., percentage of forest cover in a 
20-m buffer around recorders). Landscape-scale forest cover (i.e., 
percentage of forest cover in a 200-m buffer around recorders) was 
the only other predictor retained in the set of competing models in 
a range of ΔAICc <2 to explain acoustic entropy variation, but this 
predictor had little importance (RVI < 0.5) and its effect was not sta-
tistically significant (Figure 5b; Table S2.2 in Appendix S2).

3.2  |  Bird species richness and functional diversity

We identified a total of 87 bird species, among which 25 were clas-
sified as candidate functional insectivores. Bird species richness var-
ied from 8 to 23 species per recording site (mean ± SD: 15.2 ± 3.7, 
n = 47 sites) and richness of candidate insectivores from 2 to 9 spe-
cies (5.7 ± 1.5). The null model was among models competing in a 

range of ΔAICc <2 for both total species richness and candidate in-
sectivores (Table S2.2 in Appendix S2).

Among the five bird functional diversity and species richness 
indices, only functional quadratic entropy (Rao's Q) characterizing 
species dispersion from the functional centroid was significantly 
influenced by the predictors tested (temperature, local and land-
scape forest cover, Table  S2.2 in Appendix  S2). Specifically, Rao's 
Q increased with increasing temperature (Figure 4a and Figure 5c). 
Other predictors retained in the set of competing models in a range 
of ΔAICc <2 had little importance (RVI < 0.5) and were not signifi-
cant (Figure 5c; Table S2.2 in Appendix S2).

3.3  |  Bird predation attempts

Of the 4860 exposed dummy caterpillars, 22.8% (n = 1108) had bird 
bill marks. Model selection retained two models in the set of com-
peting models in a range of ∆AICc <2 (Table S2.2 in Appendix S2). 
Bird functional richness (FRic) (RVI = 1.00), bioacoustic index (BI) 
(RVI = 1.00) and temperature (RVI = 1.00) were selected in all mod-
els. Landscape forest cover (RVI = 0.62) was also selected as one of 
the two best models.

Bird predation attempts decreased with increasing mean annual 
temperature. Bird predation attempts further increased with bio-
acoustic index (BI), but decreased with bird functional richness (FRic) 
(Figure  4b and Figure  5d). This finding suggests that the acoustic 
component captures some features of the habitat that influence pre-
dation attempts independently of bird functional diversity. Likewise, 
the fact that temperature was selected as a significant predictor of 

F I G U R E  4  Scatter diagrams showing changes in (a) Rao's quadratic entropy (Rao's Q) and (b) predation attempts with mean annual 
temperature. These relationships were identified as significant in the linear models tested. A dot represents a site, the prediction line 
corresponds to a linear regression between the two variables and the grey bands represent the confidence intervals around this regression.
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    |  9SCHILLÉ et al.

bird predation attempts suggests that climate has an effect on pre-
dation that is not only mediated by its effect on bird communities.

The results were comparable when we incorporated latitudi-
nal changes in diel phenology in the calculation of predation at-
tempts through the standardization with the daylight duration (see 
Table S2.2 in Appendix S2).

4  |  DISCUSSION

Our study confirms the well-documented increase of bird diversity 
towards warmer regions, a pattern supporting our initial assumption 
that avian predation would mirror this pattern. Yet, we found the 
opposite—predation attempts decreased with increasing tempera-
ture—which dismissed our prediction that bird diversity and avian 
predation rate should correlate positively across large geographic 
gradients. An important result of our study is that even when the 
functional dimension of bird communities was accounted for, a sub-
stantial amount of variability remained to be explained and was only 

partially accounted for by climate- and habitat-related variables. 
Altogether, these findings suggest that the current theory should be 
re-assessed, which we discuss below speculating on the main causes 
of deviation from theoretical expectations.

4.1  |  Functional diversity of insectivorous birds and 
bird predation attempts are both influenced by 
climate, in opposite ways

In agreement with our first prediction (i, Figure 1), we provide evi-
dence for a significant positive relationship between temperature 
and the functional diversity of insectivorous birds. Despite substan-
tial differences among functional diversity indices, this result sug-
gests that more functionally diverse assemblages of insectivorous 
birds are able to coexist locally in oak woods towards the South of 
Europe (Currie et  al.,  2004; Hillebrand,  2004; Willig et  al.,  2003). 
Of the multiple functional diversity indices commonly used to 
describe ecological communities, it is noticeable that only the 

F I G U R E  5  Effects of climate (described by the mean annual temperature) and habitat (percentage of forest cover at 20 or 200 m) 
on Acoustic Diversity Index (ADI) (a), Acoustic Entropy Index (H) (b), Rao's quadratic entropy (RaoQ) (c), bird predation attempts (d) and 
effects of acoustic (Bioacoustic Index), bird diversity (Functional Richness) on bird predation attempts (d). Circles and error bars represent 
standardized parameter estimates and corresponding 95% confidence intervals (CI), respectively. The vertical dashed line centred on zero 
represents the null hypothesis. Full and empty circles represent significant and non-significant effect sizes, respectively. Circle size is 
proportional to RVI.
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10  |    SCHILLÉ et al.

quadratic entropy index responded positively to temperature, for it 
is a synthetic index that simultaneously takes into account the rich-
ness, evenness and divergence components of functional diversity 
(Mouillot et al., 2013).

Contrary to our predictions (i, Figure 1), bird predation attempts 
decreased with increasing temperature and were therefore incon-
sistently linked with bird functional diversity. More bird predation 
attempts at lower temperatures could be due to longer daylight du-
ration in spring northwards, leading insectivorous birds to have more 
time per day to find their prey and thus allowing high coexistence 
of predators during a period of high resource availability (Speakman 
et  al.,  2000). Alternatively, as birds require more energy to ther-
moregulate in colder temperatures, they may need to feed more 
in order to maintain their metabolic activity (Caraco et  al.,  1990; 
Kendeigh,  1969; Steen,  1958; Wansink & Tinbergen,  1994). 
Moreover, temperature remained an important, significant predic-
tor of bird predation attempts when we controlled for the duration 
of daylight (Table S2.2 in Appendix S2), which further supports this 
explanation. However, we cannot exclude the possibility that the 
lower predation rates at higher temperatures were due to lower 
prey detectability.

4.2  |  Bird predation attempts are partly predicted 
by bird functional diversity and acoustic activity

We predicted that bird predation attempts would increase with 
bird abundance and functional diversity (ii, Figure 1). The results 
only partially match these predictions. The relationship between 
bird functional diversity and predation attempts conflicted with 
our predictions. Specifically, we found neutral or negative rela-
tionship between these variables, depending on the functional 
index considered. Only functional insectivore richness was nega-
tively correlated to predation attempts. Negative relationships 
between predation and predator functional diversity can arise 
from a combination of both intraguild predation—predators prey-
ing upon predators (Mooney et  al.,  2010)—and intraguild com-
petition (Houska Tahadlova et  al., 2022), although we could not 
tease them apart in the present study. An important step forward 
would consist in testing whether predation patterns revealed 
using artificial prey are representative of predation intensity as 
a whole (Zvereva & Kozlov, 2021). For example, functional rich-
ness may be a proxy for dietary specialization in such a way that 
more functionally diverse predator communities would seek more 
prey of which they are specialized on and thus predate less on 
artificial caterpillars. It is also possible that a higher diversity of 
insectivorous birds in warmer regions was linked to higher di-
versity and abundance of arthropod prey and foraging niches 
(Kissling et  al.,  2012) and therefore to greater prey availability 
(Charbonnier et  al.,  2016). If so, then the pattern we observed 
may merely be representative of the ‘dilution’ of bird attacks on 
artificial prey among more abundant and diverse real prey (Zeuss 
et al., 2017; Zvereva et al., 2019). However, the dynamics between 

herbivore prey abundance and predation activity are complex. A 
higher abundance of real herbivore prey could also lead to in-
creased predation activity as demonstrated in studies such as 
Singer et al. (2011), where the presence of abundant herbivorous 
prey was found to drive higher predation rates by bird predators. 
This aligns with the notion that predator populations respond to 
fluctuations in prey density (Salamolard et  al.,  2000), adjusting 
their foraging behaviour to capitalize on available food resources. 
A follow-up of the present study should therefore pay special at-
tention to the real prey density pre-existing in each sampling site 
where artificial prey are to be deployed as a standardized measure 
of predation rates across sites.

Although passive acoustic monitoring, as most other relative bird 
sampling methods, does not allow inferring directly bird absolute 
abundance, our study further brings methodological insights into the 
usefulness of eco-acoustics into community and functional ecology. 
We found that among acoustic indices that have been shown to cor-
relate with bird abundance, activity and diversity, the Bioacoustic 
index was positively correlated with bird predation attempts. Yet, this 
index was found to be representative of the abundance and activity of 
singing birds (Boelman et al., 2007; Gasc et al., 2018). It is thus reason-
able to infer substantial causality between vocalizing bird abundance, 
their acoustic activity, and the top-down control they exert upon in-
sect prey. Such an interpretation is in line with previous studies having 
reported positive relationships between bird abundance and preda-
tion attempts on artificial prey (Roels et al., 2018; Sam et al., 2015). It is 
further substantiated by the fact that if a species is recorded in a given 
site during the breeding season, it indicates that it is probably feeding 
on that territory and can potentially affect predation rates. Our study 
indicates that despite knowledgeable limitations inherent to the cur-
rent development of analytical tools, passive acoustic monitoring has 
the potential to provide acceptable proxies for the characterization 
of bird biodiversity, the habitat they live in, and, to some extent, the 
ecosystem services they provide. The present study therefore opens 
pathways for new research on the link between functional and acous-
tic ecology.

4.3  |  Local forest cover predicts bird acoustic 
diversity, whereas landscape forest cover increases 
bird predation

Acoustic diversity increased with closeness of canopy cover in 
the immediate neighbourhood (20 m radius) of sampled trees (iii, 
Figure 1). The most responsive indices were the Acoustic Diversity 
Index (ADI) and the acoustic entropy (H), both designed to predict 
bird acoustic diversity across different habitats under various am-
bient sound conditions (Fuller et al., 2015; Machado et al., 2017). 
The former is related to a greater regularity of the soundscape and 
the latter is related to the amplitude between frequency bands and 
time. They therefore correspond to soundscapes containing mul-
tiple vocalizing species (Sueur, Pavoine, et  al.,  2008; Villanueva-
Rivera et  al.,  2011). Acoustic entropy is also known to respond 

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.14808 by C

sic O
rganización C

entral O
m

 (O
ficialia M

ayor) (U
rici), W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11SCHILLÉ et al.

significantly to local forest habitat (Barbaro et al., 2022), which is 
generally a good predictor of bird occupancy probability (Morante-
Filho et al., 2021).

Bird predation attempts were best predicted by forest cover 
at the landscape level (Prediction (iii), Figure 1). Indeed, it is likely 
that forest cover at the landscape level provides structural com-
plexity with a dense understorey and habitat heterogeneity that 
is both a source of food and niches for predatory birds to exploit 
(Poch & Simonetti, 2013). As a result, forest cover at the landscape 
scale is often a key predictor of avian insectivory in various study 
areas (Barbaro et  al.,  2014; González-Gómez et  al.,  2006; Valdés-
Correcher et  al.,  2021). This is also consistent with the results of 
Rega-Brodsky and Nilon  (2017) who found greater abundance of 
insectivorous birds in mosaic urban or rural landscapes including a 
significant part of semi-natural wooded habitats, such as those we 
studied here.

4.4  |  Large-scale variability in avian predation 
is not mediated by large-scale changes in bird 
communities

We found no evidence that the relationship between climate and 
bird predation attempts was mediated by changes in bird diversity 
or acoustic activity (iv, Figure 1). On the contrary, climate and bird 
diversity and acoustic activity had independent and complementary 
effects on predation.

At the European scale, climate may directly drive both bird ac-
tivity and abundance according to available resources (Pennings & 
Silliman, 2005). Even changes in the abundance of a single, partic-
ularly active, predator species along the European climatic gradi-
ent could explain the observed pattern (Maas et al., 2015; Philpott 
et al., 2009). For example, the blue tit Cyanistes caeruleus and the 
great tit Parus major are typical and widespread canopy insecti-
vores of European oak forests and are particularly prone to pre-
date herbivorous caterpillars while showing considerable adaptive 
behaviour to prey availability (Mols & Visser, 2002; Naef-Daenzer 
& Keller, 1999). If the predation attempts on the plasticine caterpil-
lars were to be predominantly due to these species, then it would 
be their abundance and foraging activity that would play a role in 
predation attempts rather than the overall diversity of insectivores 
(Maas et  al., 2015). Here, we based our assessment of functional 
bird composition on candidate insectivore occurrences obtained 
from standardized acoustic surveys, which on the one hand insure 
that we have no observer, site, or phenological biases on species 
occurrences, but on the other hand also makes it difficult to pre-
cisely account for each species' abundance. Other complementary 
methods to assess the relative roles of each individual bird species 
on predation rates should be deployed further to better account 
for actual predatory bird abundance and activity, including DNA 
sampling (Garfinkel et  al.,  2022), camera traps (Martínez-Núñez 
et al., 2021) or species-specific bird surveys involving tape calls or 
capture methods.

5  |  CONCLUSION

We found a positive association between temperature and bird 
functional diversity, and at the same time, a negative relationship 
between temperature and avian predation. Our study therefore pro-
vides partial support for the climatic clines in biodiversity hypothesis 
but demonstrates that predation does not follow the same pattern. 
As cross-continental studies exploring the large-scale relationship 
between climate and the strength of biotic interactions generally 
ignore local factors, we argue that characterizing the contrasting 
habitats of the study sites is a good way to circumvent some incon-
sistencies in the results. We identify pre-existing real prey density 
and single key bird species abundances as two particularly important 
variables deserving further attention. Furthermore, predicting eco-
system services—here, potential pest regulation service—on a large 
scale by standardized proxies such as acoustic ecology for predator 
diversity and plasticine caterpillars for predation function seem to 
be good ways to reduce methodological biases and strengthen our 
understanding of the macro-ecology of biotic interactions.
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